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A technique is developed for simulating the random motion of particles in turbulent fluid. 
The technique is applicable to single particles or to pairs of particles whose motions are 
correlated. The method is intended for use in determining one or two-particle Lagrangian 
turbulence statistics either from instantaneous velocity fields generated by turbulence 
simulation models or from Eulerian statistics of the turbulence acquired either from obser- 
vations, from theory, or from a turbulence closure model. In the latter capacity the scheme 
provides a basis for Monte Carlo type models of turbulent diffusion. The scheme requires as 
inputs the probability density of the Eulerian velocity, or at least its mean and variance; the 
autocorrelation of the Eulerian velocity, or at least its integral time scale; and the energy 
dissipation rate of the turbulence. 

I. INTR~OUCTI~N 

One of the classical problems of turbulence is relating the Eulerian and Lagrangian 
statistical properties of the fluid velocity field (the Euler-Lagrange problem). The 
Eulerian (fixed reference frame) statistics are readily measurable and significant 
advances have been made in recent years in solving their governing equations 
numerically. However, it is the Lagrangian (fluid particle reference frame) statistics 
that are required to analyze the dispersion of material substances in turbulent fluid. 
Unfortunately, the Lagrangian statistics are very diffkult to measure and their 
governing equations have received only cursory attention (see Monin and Yaglom 
[ 1 I). Thus, all fields of applied science that treat problems of turbulent diffusion 
would benefit greatly from the ability to predict mean properties of material concen- 
trations given measured or numerically simulated profiles of Eulerian statistical 
properties of the flow. 

To cast the problem in more specific terms let us consider the Lagrangian form of 
the equation for the ensemble mean concentration (c) of a substance at a specific 
point x and time t [ 11: 

(c(x, t)) = 1; I p(x, t 1 x’, t’) S(x’, t’) dx’ dt’. (1) 

* On assignment with the National Oceanic Atmospheric Administration, U. S. Department of Com- 
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329 
0021.9991/81/020329-18$02.00/O 

581/39/2-6 
Copyright t 1981 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



330 ROBERT G. LAMB 

Here p is the probability density that a material particle released at the point x’ at 
time t’ will be found at x at time t, S is the time rate of emission of material per unit 
volume at (x’, t’), and the integration with respect to x’ is over all space. Under the 
assumption that the material substance does not affect the fluid motions, the so-called 
passive scalar assumption, p is a Lagrangian property of the turbulence. It is 
independent of both S and c. Within this context the Euler-Lagrange problem is 
simply that of expressing p in terms of the fixed point statistical moments of the fluid 
velocity. 

Due to formidable mathematical difftculties, attempts to derive analytical solutions 
to the Euler-Lagrange problem have failed to produce any results of significant prac- 
tical value (see Lumley [2]). N umerical solutions are the only recourse, yet to date 
relatively few numerical studies have been performed. The numerical approach is 
rather straightforward: 

(1) Create an ensemble of pseudo-random velocity fields u,(x, t), n = 1,2,..., N 
whose statistics are equivalent to the available Eulerian statistics of the turbulence. 
The given statistics may be obtained from measurements, from theory, or from a 
turbulence model that predicts Eulerian statistics directly, such as that described by 
Lewellen and Teske [3]. 

(2) Transform the ensemble of velocity fields into an ensemble of particle tra- 
jectories, 

xn(f I x0) = x0 + 5 f un(x(t’ 1 x0), t’) tit’, n = 1, 2 ,..., N. (2) 
0 

(3) Calculate p from the ensemble of trajectories. 

Patterson and Corrsin [4] used this procedure to estimate some of the low-order 
moments of p. Kraichnan [5] performed a similar study except he created the random 
velocity ensemble in wave number space and transformed it into physical space at 
only those points required to solve (2). 

The approach that we have just outlined (which we shall call Eulerian based) is not 
well suited to most applied studies because it requires a considerable amount of 
computer time to generate the ensemble of velocity fields and large amounts of 
computer memory to store them, especially in studies of 3-D flows. Both problems 
can be avoided by generating an ensemble of particle (Lagrangian velocities t),,(t 1 x0), 
n = 1, 2,..., N, rather than Eulerian velocities. In this case the ensemble of trajectories 
is given simply by 

xn(t ) x0) = x0 + 1 f v,(t’ 1 x0) dt’. (3) 
0 

This appraoch seems paradoxical at first because it is the Lagrungian properties of 
the flow that we are seeking to determine. Consider, though, that quite good 
theoretical-empirical descriptions are available of the relationships among the 
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lowest-rder Eulerian and Lagrangian statistics in stationary, homogeneous flows. 
Thus, if all flows behave as though they are locally stationary and homogeneous, then 
we could use the available information to simulate particle motions in general 
situations. This is the basic premise behind the Lagrangian based methods. 
Thompson [6] and Jonas and Bartlett [ 71 performed studies using this approach. In 
both cases the v, ensemble was created using an algorithm of the form 

vn(l I xo) = av,O -At I xo> + h,(Q, 

where a and /I are constants and p,, is a computer generated normally distributed 
random vector with zero mean and unit variance. 

A basic limitation of all numerical approaches to the Euler-Lagrange problem is 
that only a finite set of the infinite group of stochastic moments required to describe 
the turbulence can be taken into account. Consequently, the random velocities u,, or 
V nr that the numerical schemes generate are not unique and Lagrangian statistics 
derived from them can differ significantly from those of the turbulence modeled 
unless key Eulerian moments are taken into account. In many instances one does 
know in advance which of the Eulerian moments are most important and often the 
values of the moments themselves are not available. In these cases the accuracy of the 
Lagrangian statistics calculations is .greatly improved by using a turbulence model 
that predicts instantaneous grid cell averaged velocities to create the ensemble of 
Eulerian velocity fields. A notable example of a turbulence model of this kind is that 
developed by Deardorff [8] of the convective planetary boundary layer. The grid 
dimensions (Ax = Ay = 125 m, AZ = 50 m) in his model are sufficiently small that the 
dominant, energy containing eddies of the turbulence are described explicitly. 
However, as with all discrete grid models, velocity fluctuations with spatial scales 
smaller than the grid dimensions A, say, are unresolvable. Thus, using a model such 
as Deardorff’s to create the velocity ensemble one would have 

u,(x, t) = d,(x, t) + uk(x, 0, n = 1, 2 ,..., N, (5) 

where d is the velocity field derived from the model, i.e., a component representing 
the large scale (>A) features of the flow; and u’ is a random component representing 
the unresolvable, subgrid scales of motion. With this appraoch it is necessary to 
represent only the small scale features of the flow by pseudo-random functions (either 
Eulerian or Lagrangian based). This is advantageous because if A falls within the 
equilibrium subrange of the turbulence, as it does in Deardorffs model, the Eulerian 
statistics of u’ can be specified with much more confidence than those of the entire 
velocity field u. In fact, if A is small enough that the total kinetic energy contained in 
the subgrid scale eddies is a small fraction of the total turbulent energy, then single 
particle Lagrangian statistics such as p can be determined ignoring u’ altogether. 
Deardorff and Peskin [9] and Riley and Patterson [lo] have computed moments ofp 
using (2) and (5) with U’ neglected. 
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While it is true that the effects of u’ on the displacement statistics of a single 
particle are small if u’ constitutes only a small fraction of the total energy spectrum 
of fluid motion, the subgrid scale velocity component u’ plays a dominant role in 
determining the joint displacement statistics of a pair of particles separated initially 
by a distance smaller than the dimensions of the grid on which the model data f are 
available. This is true even when u’ represents only a small fraction of the total fluid 
kinetic energy. Thus, to calculate two or more particle Lagrangian statistics for 
particles separated initially by distances smaller than A, one must retain the subgrid 
scale velocity term u’ in (5) regardless of the size of A. Particle pair trajectory 
simulations are needed to determine the two-particle displacement probability density 

PAX, t; x’, t’ I x10, f1; x*0, t*) 

that a pair of particles released at the space-time points (xIo, ti), (xZo, t2) will be 
found at (x, t), (x’, t’), respectively. The function pz is required to calculate second 
moments such as the mean square concentration (c*(x, t)), viz., 

(4x9 4) = J; J; (I p 2( x, t; x, t 1 x’, t’; x”, f”) 27(x’, t’) S(x”, l”) dx’ dx” dt’ dl” 

(see [ 11 I). Shu et al. [ 121 have used this equation in conjunction with p2 estimates 
derived from (2) and (5) (with ii from Deardorffs [8] model and u from Kraichnan’s 
[5] technique) to model nonlinear chemical reactions among the constituents of a 
point source plume and species in the ambient, turbulent fluid. Simulations of (c’) are 
also needed in air pollution studies to estimate “peak” concentrations. 

An experience gained in the study conducted by Shu et al. [ 121 was that Eulerian 
based techniques (i.e., those using Eq. (2)) for simulating particle and particularly 
particle pair motions in turbulence are cumbersome and expensive to use and they do 
not provide the degree of control over the particle separation rates that is desired. The 
Lagrangian type schemes are much easier to use but none of those developed to date 
is applicable to particle pair simulations. 

The purpose of this paper is to develop a Lagrangian based methodology for 
generating particle and particle pair velocities that can be used to simulate either the 
dispersive effects of the entire spectrum of velocity fluctuations, as is done in Monte 
Carlo type models, or the perturbations in particle motion induced by only a portion 
of the velocity spectrum, as is required to parametrize subgrid scale turbulence in 
diffusion simulations performed with numerical turbulence models. In our analyses 
we will work exclusively with ensemble averages, which we denote by the angle 
brackets ( ). Whether the velocities u’ that we treat represent subgrid scale 
turbulence or the entire spectrum of velocity fluctuations, they constitute stochastic 
variables whose ensemble statistics are well defined. The ensemble mean and mean 
square concentrations (c) and (c’) that one might derive from simulated Lagrangian 
statistics can be related to time- or space-averaged values using the ergodic theorem if 
the flow is statistically stationary. 
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II. DESIGN OF THE PARAMETERIZATION SCHEME 

As we noted in the Introduction, Lagrangian based schemes assume locally 
stationary homogeneous conditions. For simplicity we will invoke the further 
assumption of isotropy. In a later section we will discuss the conditions under which 
this scheme is applicable to generalized flows. 

Let x, and x2 denote the locations of a pair of particles in a coordinate system 
moving with the mean speed U of the fluid. Under the conditions assumed above, if 
the particles are released from the points xi0 and xzO, their mean displacements are 

(xn(t>) = xno, n= 1,2. (6) 

Here x represents any one of the three vector components of position. We will 
represent the variance of the single particle displacement by 

ayq = ((x, - x,0)*), n= 1,2 Pa) 

(in homogeneous turbulence u is independent of the release point xno); and we will 
denote the mean square particle separation by 

cl*) = ((Xl -x212) - (x,0 - x2o)2. 

There are an infinite number of joint moments of xi and x2 and all of them would 
have to be specified to describe these two stochastic variables uniquely. In practice, 
only the lirst- and second-order moments given by (6) and (7) are of interest or are 
practical to measure, and hence these are the only moments that will be of conern to 
us in this study. 

The type of problem to which we intend the scheme we develop to be applied is 
that in which one has knowledge of certain statistics of the Eulerian velocity field u 
and wishes to use it to estimate the Lagrangian statistics CJ and (I*). The Eulerian 
information that we shall assume is available is the probability density p,(u), or at 
least the variance uJ, ; the autocorrelation R,(t), or at least some idea of its general 
form and its integral time scale; and the energy dissipation rate of the turbulence, E. 
The first two pieces of information are adequate to generate an ensemble of pseudo- 
random particle trajectories from which the single particle displacement variance rs 
can be estimated. The energy dissipation rate constrains the evolution of (I*) relative 
to that of cr. Thus, the starting point in the mathematical formulation of our scheme 
must be an expression for generating .(x1, x,) that allows (I’) to be specified in terms 
of u2. 

Through experimentation we have found that the desired control can be achieved 
using an algorithm of the form 

x, - x,0 =at+bx,,, n= 1,2, (8) 
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where a and b are deterministic functions of travel time t and 4 and xn are computer 
generated random numbers. To satisfy (6) we require that 

G3 = k> = 0 (9) 

and to facilitate the task of generating 4 and x,, we require that they be statistically 
independent. In this case we have as a result of (9) 

tiIX2) = 011xX2) = 09 WW 

(tit”) = axn> = 03 II= 1,2. (lob) 

Squaring and averaging (8) we obtain with the aid of (10) 

((x, - x,d2) = a2(r2) + b2(& (11) 

and by squaring the difference of (8) for the cases of n = 1 and n = 2 we get 

((Xl -x212) - (-%I - x2d2 = b2W + 013). (12) 

Now if we generate the variables c, xi, and x2 so that their variances are all equal to 
u2, i.e., 

(r2) = l.x:> = (x:> = 02(t), (13) 

we can force the ratio (I’)/ u2 of the simulated particle displacements to have the 
desired form (a function of the dissipation rate E, which we discuss later) by choosing 

a2 = 1 - Q2)/2a2, W) 

b2 = 1 - a2. (14b) 

In order to use the scheme eventually in inhomogeneous flows, we must configure 
it to produce particle velocities rather than displacements. We can transform (8) into 
a velocity generator that retains the properties cited above by differentiating: 

where the over dot denotes a first-order time derivative. The next task is to formulate 
a rule for generating the velocities f and ;i, that is compatible with requirement (13). 

As we noted earlier, we do not know the exact form of a2(t) and (l’(t)) in advance. 
Indeed, it is partly these functions that we are attempting to determine. We have only 
certain information about the Eulerian velocities (listed above) from which we can 
construct ah ensemble of particle trajectories whose statistics u2 and (12) are as close 
to the true values as possible. Thus, we must assume some relationship between the 
Eulerian and Lagrangian velocities to guide the formulation of the particle velocity 
generator. We shall adopt the following conventional assumptions : (1) the probability 
density of the Lagrangian velocity is identical to that of the Eulerian velocities p,(u) 
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at the release time; (2) the Lagrangian and Eulerian velocity autocorrelations R,(u) 
and R,(u) have similar shapes; and (3) the integral times scale g of R, is larger than 
that of R, by a constant factor. 

We can incorporate all of these assumptions into the particle velocities t and i,, by 
assigning them the general forms 

&,) = : %&l-m) + %P&“), Pa) 
m=l 

Mb) = 5 a,i&-,I + wd), Pb) 
m=l 

where t, = n At, At is the time step used in the particle simulation, a, are time- 
dependent deterministic variables, and pr and pk are random variables with the 
following properties : 

P@,> = P”@S)~ (1 W 

(o&n) kc?l)) = 09 n#m, 

@r(b) Prod) = 0, nfm. 
(17b) 

Similar properties are possessed by pk. In fact, since the statistics of c and x,, are 
identical, we shall restrict attention to { in the analyses that follow. 

Equations (16) constitute Markov-M sequences. Note that Eq. (4), which some 
previous investigators have used to simulate single particle motions, is Markov-1. 
This lowest-order sequence is limited in its applicability because it is incapable of 
producing autocorrelations that are not positive definite. The band-limited spectrum 
of subgrid scale turbulence and the damping action of stably stratified flows both give 
rise to oscillatory velocity autocorrelations whose integral times scales are 
vanishingly small. To reproduce these types of stochastic velocities requires Markov- 
2, or higher, sequences. From here on we will restrict attention to the case M = 2. 

For notational purposes it is convenient at this point to dispense with the 
subscripts on the coefftcients a in (16) and to use them instead to denote the time 
step. Thus, for the case M = 2 we will write (16a) in the form 

8*+1 = at,-, +Pt, + YP*. (18) 

For notational simplicity, we will not carry a time subscript on pr because it is 
immaterial except in analytical manipulations of (18) that produce joint moments, 
such as those specified in (17). Squaring (18), averaging, and making use of (17) we 
obtain 

(19) 

By virtue of (17a) 

(p;>=u:,. (20) 
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Furthermore, in stationary homogeneous turbulence, which we are considering here, 
we have (z~i)=of, n= 1,2,..., co. From (14)-(17) and (20) we find that this 
condition is satisfied if 

((5) + (g) b’*/a* = 0;. (2la) 

As we discuss later, in applications of this scheme to subgrid scale turbulence, we can 
represent the parameters a and b by constants without significant loss of accuracy. 
The same assumption can be adopted to treat particle motion in boundary layer flows 
up to the time that one of the particles strikes a boundary. After that point we set 
u = < = 0, b = 1. Thus, in the remainder of this paper we restrict attention to the case 
where ci = d = 0. In these situations, (21a) reduces to 

for all n, and the autocorrelation (u,,v,) becomes 

(~,~,,A = bt,,> = dR,-, (R,-, = R,((n - m)At)). (22) 

That is, the velocity autocorrelation is a function only of the time interval between 
the two observations. In view of (19), conditions (2Oh(22) place a constraint on the 
values of a, p, and y- 

a2+p2+y2+2ajIR,=1. (23) 

Multiplying (18) by <, and averaging we get 

and in general 
R, =P/(l -a) (24) 

R, = al?,-, +DR,-,, n >, 2. (25) 

An important characteristic of the autocorrelation function, and one that we wish 
to control in simulations, is its integral time scale, which in the present instance we 
define by 

drdt f R,. (26) 
n=O 

Using (24) and (25) we obtain 

K/At= 1 +/I/(1 -a)+a 5 R,-,+P f R,-,. 
n=2 It=* 

Expressing the two summations in this equation in terms of K we find 

(27) 

(1 -a + a/3) 
“At=(l -a)(1 -o-P). (28) 

It is evident from this result that the coefficients a and 8, but not y, affect the form 
of the velocity autocorrelation and that by selecting them properly we can achieve a 
desired integral time scale and autocorrelation form. Once a and /I have been 
selected, y is fixed by Eq. (23). 
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Figure la is a plot of Eq. (28). It shows that with the Markov-2 sequence, integral 
times scales in the range 0.5 < &T/At < co can be achieved. (As a point of reference, 
a/At = 1 corresponds to a white noise process, i.e., one in which the particle velocity 
at any given time is independent of its values at all previous times.) The shaded 
region in Fig. la delineates the “working space” of the coefficients a and /I. Outside 
this space, y, under the constraint of (23), is complex. 

-10 0 10 2.0 

FIG. 1. (a) The integral time scale g/At of the simulated particle velocities as a function of the 
parameters 01 and /3 (see Eqs. (18), (22), and (26)). Values of a and /3 outside the shaded triangular 
region are not permissible because they force the parameter y  to be complex. (b) Isolines of the number 
of zero crossings of the velocity autocorrelation (Eq. (22)) in the lag interval 0 < r ( lOOAt. 
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A general picture of how the joint values of LT and /? affect the shape of the 
autocorrelation R, (defined by (22)) is provided by Fig. lb. Plotted there are isolines 
of the number of times the autocorrelation R, crosses the zero line in the time lag 
interval 0 ( n < 100. Further details are available from Fig. 2 which shows the actual 
autocorrelations for the three sets of parameter values (q/3) indicated by the points 
labeled A, B, and C in Fig. 1. It appears that, in general, as the frequency of 
oscillation of R, increases, the damping of the amplitude of R, decreases. Thus, for 
(a, /I) N (-1, -1) the autocorrelation function oscillates virtually undamped between 
values of + 1 and -1 at each successive lag interval n At as n + co. 

By definition of i we have 

&) = t(O) + AC 5 in- I “Cl 
which yields for the case r(O) = 0 

({‘(t,)) = At*a; N+2 i (IV-n)R, . 
n=l 

(29) 

(30) 

FIG. 2. The velocity autocorrelation produced by the (a, /I) values denoted by the points labeled A, 
B, and C in Fig. 1. The corresponding values of y  are given by Eqs. (23) and (24). 
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Since it is (r*) that represents the single particle displacement variance (see (13)), it 
is imperative that a and /I be selected to make R, as accurate a representation of the 
true particle velocity autocorrelation as possible. 

We have already specified in (17a) that the probability density of the computer 
generated random numbers pI be identical to that of the Eulerian velocities. In 
neutrally stratified, homogeneous turbulence, velocity fluctuations are normally 
distributed (Batchelor [ 13];, but in other conditions, e.g., convective turbulence, it 
may be distinctly non-Gaussian. Methods exist for generating random variables with 
any distribution. Perhaps the simplest is to use a uniform random number generator 
to index a table of numbers configured in such a manner that the values retrieved 
have the desired distribution. We have found this technique to be very effective and to 
require minimum machine time. 

All of the steps described above for generating 4 and < pertain to x, and x2 as well. 
The only difference is that the random numbers p1 and p2, which are the counterparts 
of pt, should have the proper joint distribution. In practice this information is rarely 
available and it is necessary to assume that these are statistically indepent variables. 
Their marginal densities are the same as that of pr. 

III. INITIALIZATION OF THE SCHEME 

In order to preserve the constancy of (e) and G’) in simulations of stationary, 
homogeneous turbulence, care must be taken in generating the initial values of these 
velocities. From (18) and analyses like those that follow that equation it is easy to 
show that the initial values of i should be 

tll = P&)~ (314 

g, = R 1 & + (1 - R;)“* @t). @lb) 

Subsequent values are then obtained from (18). Similar expressions apply to ji(tJ 
and i2W 

IV. APPLICATION OF THE SCHEME TO NONSTATIONARY,~NHOMOGENEOUS FLOWS 

Our methodology has been based on the premise that any turbulent flow can be 
treated as though it is locally stationary, homogeneous, and isotropic. These 
assumptions create at least two basic problems in attempting to apply it to situations 
where the flow does not possess these properties everywhere. The first is that some of 
the mathematical relationships that we used to develop the scheme no longer hold; 
and the second is that it is not clear how a particle velocity acquires the local 
properties of a flow as it moves through regions possessing spatially and temporally 
variable flow properties. For example, if a particle leaves a point where the integral 
time scale of the Eulerian velocity autocorrelation has one value and moves into a 
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region characterized by a wholly different value, at what rate is this change manifest 
in the particle’s motion. This is a very basic question that we cannot answer at this 
point. Perhaps studies performed with numerical turbulence models can resolve it. 

The problems associated with the mathematical structure of the scheme can be 
minimized by making the simulation time step A? sufftciently small. ‘In 
inhomogeneous turbulence the velocity variance (& will depend on where the 
particle is in the fluid in the mean at time step II At. If oU is taken as a characteristic 
particle velocity scale and (0;’ 1 Va, I)-’ as a characteristic length scale of the 
inhomogeneity of the flow, then we can expect that (8’) will vary little within any 
interval of three time steps (as we assumed earlier in our manipulation of (19)) 
provided that 

At << )%,I-‘a (32) 

The time step should also be small compared to the smallest period of non- 
stationarity of the flow statistics. 

In order for the definition (22) of R, that we used in the scheme development to 
remain meaningful, we require in addition that 

(33) 

There is no way to estimate accurately the magnitude of error that would be incurred 
by applying our scheme to problems in which (33) is not satisfied. 

V. MODIFICATIONS OF THE SCHEME NEAR REFLECTIVE BOUNDARIES 

The Markov form of the velocity parameterization imparts a “memory” of approx- 
imate length d to the motion of each particle. Consequently, a particle that has a 
positive velocity, say, just prior to its striking a reflective boundary, is more likely to 
have a positive value again after impact than a negative one. Hence, on average, each 
particle will bounce against barriers several times before finally its velocity is 
reversed and it moves away. This phenomenon is manifest in diffusion simulations by 
anomalously large particle concentrations adjacent to all reflective surfaces. 

In actuality, turbulent eddies that carry particles toward a wall usually have a 
circulatory motion that soon carries them back away, and consequently the toward- 
the-wall memory is lost. We can approximate this effect in our scheme by 
reinitializing <, i, xn, and i, (using (31)) immediately following each reflection from 
a surface. We have tested this modification of the scheme and have found that it 
eliminates the bouncing phenomenon. We might add that if the toward-the-wall 
memory is reversed after collision with walls, rather than erased, the particles 
rebound so strongly that they spend too little time near reflective surfaces. 

In applications of the scheme to simulation of subgrid scale turbulence, the 
probability density of Pr (and p,) can be skewed either positively or negatively during 
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post reflection reinitializations to account for the presence of resolvable scale updraft 
or downdraft motions in the grid cell directly over the particle. 

VI. APPLICATIONS 

In this final section we will discuss some of the steps involved in applying the 
scheme we have developed to simulating subgrid scale turbulence and to modeling 
dispersion in the atmospheric boundary layer. Before proceeding it is convenient to 
summarize the complete scheme. 

(t,, is reinitialized, see (31), after each particle reflection from walls) 

639 c, see (31), 

r(t,) = r, = At e t,-, , 
m=l 

where ps is a computer generated random number with properties (17) and a and /I 
are time-dependent variables chosen to yield a given integral time scale d (see 
Eq. (28)) and velocity autocorrelation shape (see Figs. 1 and 2) 

y2 = 1 - a* -/I’ - 2ap2/(1 - a), 

3ik(tn+l)=a~k(fn-l)+P~k(tn)+YPk(tn+l), 

Xk@n) = At e ik@m-1) hk(tn) = 0 after reflection) 
!?I=1 

ik(rO) and ik(t,) are the same as (3 1) except pl is replaced by pk. pk (k = 1,2) are 
computer generated random numbers with properties analogous to (17); 

a2 = 1 - (12)/2a2, 

b2 = 1 - a’, 

. da 
a=x 

Specification of the particle separation (I’) needed to determine the coefticient a is 
discussed below. 
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A. Subgrid Scale Turbulence Parameterization 

When the flow fields from numerical turbulence models are used to derive 
Lagrangian turbulence statistics, the effects on particle motion of subgrid scale 
velocity fluctuations must be taken into account. This was discussed in the 
introduction (see Eq. (5) and the ensuing discussion). Here we will discuss how the 
scheme we have developed could be used in this role in applications of Deardorffs 
[ 81 turbulence model. 

His model provides, in addition to other quantities, 3-D wind components and 
subgrid energy E at time intervals of 8 set on a network of 64000 grid points of 
resolution ,4 = (dxdyd~)~~ 21 100 m. Under the conditions of his simulations, d lies 
in the inertial subrange. 

Assuming that the subgrid scale velocities are isotropic and have a Gaussian 
distribution, we would use in accordance with (17a) normally distributed random 
numbers for pr (and pl, pJ with zero mean, and variance (see (20) 

(34) 

where E is evaluated at the instantaneous particle position. 
The band-limited spectrum of subgrid scale turbulence implies that the 

autocorrelation of the Eulerian velocities has a zero integral time scale [ 141. Whether 
the same is true for the Lagrangian velocity is not known, but it is probably safe to 
assume that its time scale & is much smaller than E-“‘A. The smallest time scale 
that can be simulated by our scheme is @? = 0.5At. Thus, if we select values for a and 
/3 that yield this minimum time scale (see Eq. (28) and Fig. la), and if we assume that 
the time scale & of subgrid turbulence is K = O.lE-“*A, then we would require a 
time step 

At <0.2E-“*A 

in the simulation of the subgrid turbulence. 
Figure la shows that there is a sizable region of (a,@ space in which the 

corresponding integral time scale K has its minimum value 0.5 At. To decide which 
point in this-space to use to simulate subgrid scale turbulence, 
(a, /I) be selected to yield an autocorrelation function that is 
energy spectrum of the subgrid scale turbulence. In this regard 
homogeneous stochastic process with the band-limited spectrum 

k,-B/2<k<k,+B/2 
otherwise 

has the autocorrelation 

cos k, S. 

we recommend that 
consistent with the 
we point out that a 

(35) 

(36) 
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Here k is wave number, 

and B is the bandwidth. If we assume that the spectrum of subgrid scale turbulence 
can be approximated by (35), then the spectrum amplitude A and the band width B 
are related to the variance 0: of the subgrid turbulence by 

a: = AB. (38) 

If we use as a measure of A the amplitude of the spectrum at the grid cutoff wave 
number n/A (the Nyquist wave number), then the effective bandwith is 

B = 2E/3S(n/A) 

(cf. (34) and (38)). The amplitude of S at n/A might be approximated by 
extrapolating the resolvable scale velocity spectrum down to this wave number or by 
making use of inertial subrange theory, if appropriate. Thus, with B given by (39), 
A = S@/A), and 

k, = n/A + B/2, (40) 

we have in (36) an approximation of the form of the spatial correlation of the subgrid 
scale turbulence. The corresponding form of the Lagrangian time autocorrelation may 
be grossly different: but if we assume for now that the two correlation functions have 
at least similar shapes, we can use (36) to guide the choice of (a,P) values for use in 
the velocity parameterization above. Note, for example, that if the bandwidth B is 
small, the damping factor (in parentheses) in (36) has approximately unit value for 
sufficiently small values of 6 and the resulting function R(d) is an undamped cosine 
wave. Our scheme yields autocorrelations with this property as is revealed by the plot 
in Figure lb of the number of zero crossings of the correlation as a function of (a,/I). 
The larger the number of zero crossings, the less damped the oscillatory component 
of the simulated autocorrelation is. 

For large bandwidths, the damping factor in (36) is more dominant, leading to 
functions R(6) that, for sufficiently small 6, resemble that plotted in Fig. 2 for the 
(a, /I) pair denoted by the point C in Fig. 1. 

The guidelines we have just outlined for selecting values of a and /3 for simulating 
subgrid scale turbulence are obviously not definitive. Further studies of the 
Lagrangian characteristics of band-limited turbulence are needed to achieve reliable 
parameterizations of subgrid turbulence. Our guidelines should be viewed only as a 
suggested criterion, in addition to that of minimizing the integral time scale 8, for 
selecting (a, /I). 

The fact that A lies in the inertial subrange greatly facilitates the task of 
formulating an expression for the parameter a for use in simulating the subgrid scale 
motions of a pair of particles separated initially by a distance I, < A. Using 
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Kolmogorov’s similarity hypothesis, Batchelor [ 15 ] showed that if I,, lies in the 
inertial subrange, then for small times 

(12) = q c, 1;f3Eu3t2, t < p& - v3 0 3 (41) 

where C, is a constant of order one, E is the energy dissipation rate of the turbulence, 
and t is travel time. The single particle displacement variance o2 is initially 

cJ2 = $t2 I( . (42) 

This follows immediately from the relationship x = ut, which is valid only for travel 
times t small enough that R,(t) = R,(O). 

Deardorff [ 161 suggests for E the semi-empirical expression 

E = E3’2(0.7G/A), (434 

where 

G = 1 + 2((z/Az + 3/2)2 - 3.3)-l, z > 442, (43b) 

and z is elevation above ground. Combining f41)-(43) with (14a), we obtain an 
expression for the initial value of the scheme parameter a- 

a, = a(to) = 1 - (0.7G)Y3 (lo/A)y3. (44) 

To obtain this expression we set C, = 215. 
Earlier we pointed to evidence that the time scale & of subgrid scale turbulence is 

very small. It can be shown [ 141 that if & = 0, a2 increases from an initial value of 
zero to some finite constant value that it retains for all later time. The corresponding 
behavior of (1’) when I, < A is not known. Based on the points just raised we propose 
that a reasonable interim aproximation is 

from which it follows that 

a(t) = a,. (45) 

Any errors introduced into the scheme by this simple expression will not grow 
indefinitely because once the particle separation exceeds A, its subsequent evolution is 
dominated by the resolvable scales of motion. 

In summary, in simulations of subgrid scale turbulence, our recommended particle 
pair velocity parameterization is 

Vk = a,(!+ (1 - a~)“2jf,, k= 1,2, 
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where a, is given by (44) and 

&,+A = &I+1 =wL +Pi, + YP*. 

Here pr is a Gaussian (computer generated) random number with zero mean and 
variance 

It must also have the properties given by Eq. (17). 
The parameters a and p should be chosen such that (1) a/At = 0.5 (see Eq. (28) 

and Fig. l), and (2) the shape of the autocorrelation function R, (see (25)) is 
consistent with the energy spectrum of the subgrid turbulence (see Eqs. (35) and (36) 
and the discussions that follow them). The time step At used in the scheme should be 

At = 0.2E- lJ2A. 

The expressions for y and ik are given in the introduction of Section VI (the 
random variables p, and p2 used to generate ik have properties identical to pr). Refer 
to Sections III and V for instructions on initialization, and modifications near boun- 
daries. 

B. Modeling Dispersion in the Atmospheric Boundary Layer 

The mathematical details of applying the scheme developed here in conjunction 
with Eq. (1) to predict mean concentration is presented in Lamb et al. [ 171. The use 
of the velocity simulation scheme in this role is the same as in the parameterization 
of subgrid scale motion described above, except similarity profiles of u,,, u,,,, E, etc., 
are used in place of E, and profiles of the horizontal flow U(z) gotten either from 
similarity theory or observations are used in place of the model generated u^ values to 
determine mean transport. In this type of application the stochastic velocity has an 
indefinitely broad spectrum, rather than just the high-frequency fluctuations rejected 
by the grid cell averaging employed in numerical turbulence models. Thus, the 
integral time scale d is significantly larger than zero and empirical data are available 
from which it can be estimated (see [ 171). The dispersion model presented in 
Ref. [ 171 is tested against an extensive set of concentrations data and found to 
provide quite accurate estimates of the mean concentrations produced by sources in 
the atmospheric boundary layer under a wide range of wind speed and stability con- 
ditions. 

VII CONCLUSION 

We have developed a method of generating pairs of random velocity fields suitable 
for simulating particle pair motions in turbulent fluid. The scheme can be used to 
simulate the effects of subgrid scale turbulence where one in interested in determining 

%1/39/2-l 
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Lagrangian turbulence statistics from instantaneous velocity fields obtained from a 
numerical turbulence model; or the scheme can be used as the basis of’a Monte Carlo 
model of turbulent dispersion, where one attempts to simulate dispersion from given 
Eulerian statistics of the turbulence. The inputs to the scheme include the profiles of 
mean wind and variances of the turbulence velocities, the Lagrangian integral time 
scale, and the energy dissipation rate of the turbulence. With very simple 
modifications, the scheme can be used to simulate buoyant particles, particles with 
nonzero settling velocities, and particles that are absorbed or resuspended from 
boundary surfaces. 
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